DNV·GL

Uncertainty propagation in wind turbine and support structure design

11 October 2017

- Part 1: Lindert Blonk, DNVGL
 - Introduction to probabilistic design methods in DNVGL
- Part 2: Laurent van den Bos, CWI / TUDelft
 - Model uncertainty quantification & propagation

DNVGL

150	350	100	15,000
years	offices	countries	employees

business areas

RESEARCH & INNOVATION

Energy - Renewables Advisory supporting offshore development

DNVGL Turbine Engineering Support

- Providing advisory services to manufacturers of wind turbines, farm developers & wind farm operators
- ~40 staff, based predominantly in Bristol UK, Groningen NL and Beijing CN
- Global business unit with equal split of customers in Asia and Europe
- Sections; loads analysis, control design, structural & mechanical design
- R&D topic: probabilistic design

"The world is noisy and messy. You need to deal with the uncertainty"

- Daphne Koller

What is probabilistic design? – the technical concept

Why probabilistic design?

Current deterministic approach...

• **PSF=1.35** calibrated for application across a broad range of technologies - *generic*

Current safety-factor based design methods are a "blunt instrument": **potentially overconservative** (or under-conservative!)

Why probabilistic design?

With probabilistic design approach...

- **Specific** probabilities of failure (Pf) are well understood by year, component and failure mode
- Treatment of uncertainty in a more rigorous manner

Use probabilistic design approach in order to rationally balance **reliability** and **costs**

probabilistic design – how?

For Structural Reliability Analysis (SRA), we define our model as a:

Limit state function:

G(X,Y) = S(X) - L(Y), G < 0: failure

L: load model S: strength model **X,Y: stochastic parameters**

Probability of failure = P[G<0]

calculated using numerical uncertainty propagation methods (FORM, SORM, Montecarlo, ...)

Example: SRA applied to 7MW turbine fatigue

Example limit state – fatigue in tower can of offshore 7MW turbine

Uncertainties in **loads**:

- Input uncertainties: turbulence, air density , airfoil characteristics,..
- Model uncertainties: structural dynamics model, aerodynamic model

Uncertainties in **resistance**:

- Input uncertainties: geometric tolerance, weld fatigue strength,..
- Model uncertainties: Miner's rule,..

Example: SRA applied to 7MW turbine fatigue

Years

Limit state for tower can with lowest safety margin from original design (10-15%)

Annual P_f at year 25: **1.13e-4** ~ Pf_target (5e-4)

Other applications of uncertainty propagation methods

- Quantification of uncertainty & risk in:
 - Energy yield
 - Offshore LCOE
 - Turbine site suitability

Future work

- Loads important source of uncertainty in design
- Existing uncertainty propagation methods have limitations:
 - FORM method: inaccuracies introduced by linearization
 - Monte-Carlo method: computationally expensive
- Need better uncertainty propagation methods
- In addition, need to quantify uncertainty in loads model itself.

www.dnvgl.com

SAFER, SMARTER, GREENER